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ABSTRACT / l  n.5 
This study deals with f u l l y  developed laminar forced convection i n  

rectangular channels that, are heated on the broad sides. The analysis 

determines the e f fec t  of peripheral heat conduction within the heated 

walls on the w a l l  temperature distributions. The unheated short side 

walls are assumed nonconducting. m e  heat conduction within the broad 

walls was formulated i n  terms of an integral  equation and coupled w i t h  

the convective energy equation w i t h i n  the fluid.  Solutions a re  given 

where the heating extends over the ent i re  width of the broad side, i s  

removed from the corner region, o r  extends beyond the corner i n to  the 

side wall. .  

i n  the peak w a l l  temperature and i n  the temperature gradients along the 

Transverse wall conduction produced substantial  decreases 

long side. For channels having the same heat generation per uni t  length, 

an aspect r a t i o  of 20 or  larger  yielded the minimum peak temperatures 

fo r  any value of the thermal conductqivity. u T Y 6 R  

N O M ! 3 I ? Y C ! ~  

Fourier coefficients defined by eq. (13) 

coefficients defined by eq. ( l l b )  
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half-length of the short side of a rectangular duct 

half-length of the long  side of a rectangular duct 

integral  coefficients given by eqs* (14) and (17)  

specific heat of f l u i d  a t  constant pressure 

half-length of heated region on broad s ides  

Fourier coeff ic ients  given by eqs. (16)  and (20)  

distance heated region extends in to  side p l a t e  

quantity defined i n  eq. (Az) 

wall-to-f lu id  conduction parameter, w%/akf 

thermal conductivity 

s t a t i c  pressure 

t o t a l  heat-transfer r a t e  t o  f l u id  per uni t  channel length 

heat generation r a t e  i n  w a l l  per un i t  area 

Fourier coefficients defined by eqsc (A5) and (A7) 

temperature 

loca l  f l u i d  velocity 

integrated mean f l u i d  velocity 

thickness of channel wall 

aimensionles s coordinate, x/a 

coordinate measured from center of duct i n  a direct ion pa ra l l e l  

t o  Ghort side 

dimensionless coordinate, y/b 
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coorainate measured from center of duct i n  a direct ion parallel 

t o  long side 

Z coordinate measured along duct length 

Y aspect r a t i o  of rectangular duct, b/a 

e dimensionless temperature, 4kf'J!/Q 

CL absolute f lu id  viscosity 

V 

P f l u i d  density 

Sub sc r i p t  s : 

b integrated mean value 

f f l u i d  

L Laplace solution 

P Poisson solution 

W W a l l  

coordinate pertaining t o  normal derivative 

INTRODUCTION 

It i s  common i n  many nuclear reactors t o  u t i l i z e  f u e l  assemblies in 

which a ser ies  of ga ra l l e l  fue l  bearing p la tes  are closely spaced and 

supported along t h e i r  edges by unfueled side p la tes  (fig. l ( a ) ) .  

array forms a se t  of rectangular channels through which the coolant 

flows. 

p l a t e s  with a small amount being produced by gamma heating i n  the un- 

fueled portion and side plates.  

posed of a t h i n  layer of uranium fuel  pressed between two t h i n  metal 

This 

Most of the heat i s  generated i n  the fueled portion of the  broad 

A typical fue l  p la te  i s  com- 
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plates. 

nate a specified distance away from the side p la te  ( f ig .  l ( a ) ) .  The 

Current practice is t o  have the edge of the f u e l  loading termi- 

reason f o r  retaining a short unfueled width adjacent t o  the corner i s  t o  

avoid transferring heat d i rec t ly  into what i s  believed t o  be a region of 

poor convection resul t ing from law veloci t ies  or the presence of a lam- 

inar region when the core of the  f lu id  i s  turbulent. 

Before a reactor i s  operated at  its design power leve l  it is neces- 

sary t o  know w i t h  some degree of accuracy the w a l l  temperature dis t r ibu-  

t ions  i n  any cooLing channel. 

magnitude and location of the maxbnm w a l l  temperature since excessively 

I n  particular,  it is  Luqortant t o  know the 

high values can lead t o  fue l  assembly failures and serious reactor damage. 

The w a l l  temperature dis t r ibut ion i n  a cooling channel is influenced 

by many factors- such a s  the coolant velocity, dis t r ibut ion of heat gener- 

a t ion  along the w a l l s ,  channel aspect ra t io ,  thermal conductivity of the 

w a l l  material, and width of the unfueled region in  the fue l  plates. Many 

of these factors  a re  interrelated i n  a c w l i c a t e d  manner, and, t o  deter-  

mine the combined ef fec t  of cer ta in  ones, it is  necessary t o  analyze sim- 

p l i f i e d  models t h a t  r e t a in  the essent ia l  features  of the general problem. 

Some studies of forced convection in  rectangular channels have been 

reported i n  the l i terature .  Cheng [l] obtained an analyt ical  solution f o r  

laminar flow i n  a channel that was uniformly heated on a l l  four sides, 

and evaluated the wall temperatures fo r  aspect r a t i o s  of 1, 2, and 4. 

Sparrow and Siege1 [ 2 ]  used variational methods t o  analyze channels with 
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uniform heating on all four sides, and also obtained a 6olution with uni- 

form heating on only the two broad walls fo r  an aspect r a t i o  of 10. 

Savino and Siege1 [ 31 provided the analyt ical  solution f o r  the  case i n  

which the sides of the channel are uniformly heated, but the heat f l ux  

on the short sides i s  an a rb i t ra ry  fract ion between 0 and 1 of the f lux  

on the broad sides. Their analysis showed tha t  the peak w a l l  tempera- 

tu res  w e r e  lowest when a l l  the heat was transferred through the broad 

walls only, and the  aspect r a t i o  was increased t o  about 10 o r  20. 

yond 20 there wag no additional temperature decrease of significance. 

Be- 

I n  ref.  4, a s i tuat ion was analyzed wherein the  heating, which could be 

uniform ur nonuniform, occurred only on the broad walls but w a s  removed 

various short distances from the side w a l l .  As  t he  width of the un- 

fueled region w&s increased, the peak temperature shifted from the  cor- 

ner t o  the center of the broad w a l l .  

For a l l  the cases mentioned, the walls were assumed t o  be noncon- 

ducting so that the  heat was convected away a t  the  loca l  posit ion where 

it was generated. 

so tha t  some of the heat generation would flow peripherally within the 

I n  an actual  channel, the  w a l l  would be conducting 

w a l l  and tend t o  equalize the wall temperature distribution. Eckert and 

Low [5] analyzed numerically the fu l ly  developed turbulent heat t ransfer  
. .  

i n  isosceles-triangular and rectangular (aspect ra t io ,  5) passages t o  

determine the e f fec t  of peripheral conduction i n  the walls when the walls 

were heated internally.  The resu l t s  showed how the wall temperatures 
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decreased and becme more d f o r m  as the r a t i o  of the  w a l l  t o  f lu id  ther- 

m l  conduction was increased, but the additional e f fec t  of aspect r a t i o  

was not treated. 

ence method, the heat t ransfer  i n  the corner region of a rectangular 

cooling channel f o r  a specific s e t  of conditions. 

heat-transfer coefficient on each w a l l  was assumed. 

i n  the w a l l  was included, the r e su l t s  were too limited t o  provide general 

conclusions on the e f fec t  of w a l l  conduction. 

Baumeister and Reilly [ 61 studied, by a f in i te  differ-  

A single value of the 

Although conduction 

I n  the present paper the coJribined ef fec ts  of peripheral  w a l l  conduc- 

t ion,  aspect ra t io ,  and width of the unheated region i n  the corner w i l l  

be examined* To simplify the analysis, it i s  assumed tha t  only the broad 

heat-generating’sides a r e  conducting and that the short side walls are  of 

insulating material with zero conductivity. 

t u re  dis t r ibut ions a re  evaluated for  several aspect r a t i o s  and spcings 

of the  fue l  loading away from the  corner. 

where the fueled region extends beyond the corner and in to  the side 

plates.  

r a t i o  is sham fo r  a l l  values of t h e  wall conductivity. 

Dimensionless w a l l  tempera- 

Some cases are  a l so  given 

The dependence of the maximum w a l l  tenrperature on the as-pect 

ANAtYSIS 

For th i s  study, the typical  fuel  assembly cooling passage shown i n  

fig. l ( a )  has been approxhated by the m o d e l  i n  fig. l ( b ) .  

thickness of the fue l  p la te  has been replaced by a homogeneous conduc- 

t i ng  plate w i t h  in te rna l  heat generation over a w i d t h  along the broad 

A half- 
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side equal t u  that of the f u e l  loading. 

ing generated i n  the unfueled regions of the walls i s  neglected. 

ever, because the en t i re  broad w a l l  has a nonzero thermal conductivity, 

heat is conducted in to  i t s  unfueled region and then transferred t o  t h e  

f l u i d  i n  the cornerr 

t h i n  so tha t  the temperature i s  constant through the w a l l  thickness and 

equal t o  the loca l  f l u id  temperature a t  the  w a l l .  The short side waUs 

are  assumed t o  be of insulating material having zero thermal conductiv- 

The s m a l l  amount of gamma heat- 

How- 

The broad walls are  assumed t o  be suf f ic ien t ly  

i t y ,  which idealizes somewhat the prac t ica l  s i tuat ion where there i s  a 

poor thermal bond at the jo in t  between the f u e l  p l a t e  edge and the side 

plate. 

f l u i d  has constant properties. 

ax i a l  locations suff ic ient ly  far from the channel entrance so tha t  the  

velocity and temperature p ro f i l e s  are f u l l y  developed. 

the  temperatures can be compared on an  equivalent basis, the t o t a l  heat 

The assumptions are made t h a t  the f l o w  is  laminar and that the  

The region under study is  r e s t r i c t ed  t o  

I n  order t ha t  

generated per unit channel length i s  kept the sane f o r  a l l  aspect r a t i o s  

and configurations of the heat-generation dis t r ibut ion i n  the  walls. 

Since the convective term i n  the energy equation involves the veloc- 

i t y  dis t r ibut ion,  the f i r s t  step i n  the analysis i s  t o  specify the veloc- 

i t y  var ia t ion over the cross section. 

f luid properties, the velocity dis t r ibut ion can be obtained independent 

of the energy equation since the viscosity i s  not influenced by the 

temperature distribution. 

With the assumption of constant 
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Velocity distri5ution. - For fu l ly  developed lsteady laminar flow, 

the momentum equation i n  rectangular coordinates i s  given by 

- X x ( 1 - Y )  - LZx(l+Y) 

1 + e - n q  

2 2 
+ e  e 

The solution f o r  u(x,y) i s  available i n  Knudsen and Katz [ 7 ] ,  page 101  

a s  well a s  i n  a number of other references, including some dealing w i t h  

the  s t r e s s  function for torsion of a rectangular bar. 

used here has been placed i n  a form especially suitable for evaluation 

The expression 

nn;X 
2 cos 

by a computer: 

U -= 

m 
lrtl 

1 - x  2 + -  32 x(-liT 
n 3 

n=1,3,5,.. . 
fl 

U 

2 
3 
- -  

n 

Energy equation. -.The energy equation i n  the f lu id  expresses a bal- 

ance between the energy conducted into and convected away from a d i f fe r -  

ent i a l  volume : 

Viscous diss ipat ion has been assumed negligible. 

thz xz11 h e a t k g  Fer m f t ,  channel length 

For steady conditions 

Q must be carried away by 
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convection. This leads t o  the overall energy balance 

For f u l l y  developed conditions, the temperature prof i le  r e t a ins  the  same 

shape fqr a l l  z so a q a z  = aTb/az, and, therefore, 

a2T Q .  - =  aT - =  
4abpcp7i’ az2 

Substituting in to  eq. (3) gives 

where the temperatures T have been nondimensionalized by Q/4kf t o  pro- 

duce 6. This Poisson equation, with u/C given by eq. ( 2 ) )  is t o  be 

solved subject t o  boundary conditions tha t  account f o r  peripheral  heat 

conduction i n  the broad duct wall. 

Cases I (a )  and (b)  - Heating extends par t  way and all the way t o  the 

corner, respectively. - With reference t o  f ig .  l ( b ) ,  a l l  the cases con- 

sidered herein w i l l  have equal heat generation per uni t  volume on both.  

broad sides, and the fue l  w i l l  be distributed symmetrically about the 

x-axis. Hence, from symmetry, only one quarter of the  channel cross 

section need be considered, and the upper right quadrant i s  selected as 

shown i n  f ig .  2. For case I, the heating extends from y = 0 t o  y = c 

where c. < b; thus, the energy source can extend a l l  the way t o  the cor- 

ner or be removed a distance d away fromthe corner. 

- 
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A s  discussed i n  ref .  8, if, fo r  a given geometry, a solution of 

Poissonfs equation i s  known for simple boundary conditions, then more in- 

volved boundary conditions can be accounted for by superimposing solu- 

t ions  of Laplace's equation. 

t i o n  i s  available i n  ref. 3 f o r  the case where uniform heating extends 

on the broad w a l l  from y = 0 t o  b, there ia no heating i n  the side 

w a l l ,  and both w a l l s  are a l l  nonconducting. 

and satisfies the equation 

An analytical  solution of Poissonfs equa- 

This solution is called Bp 

l u  
ab 5 $ep = -- 

w i t h  t h e  boundary conditions 

( 5 )  

This Poisson solution, which a l so  sa t i s f i e s  eq. (4), accounts f o r  the 

t o t a l  heat addition t o  the channel by vir tue of eq. (5c) so any solutions 

that are added t o  it must not add or  subtract any additional net amount 

of heat. 

W e  now seek a solution of the energy eq. (4) i n  the form 

e = ep + eL 
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If this i s  substi tuted in to  eq. (4) and eq. (5) i s  then ut i l ized,  it is 

found tha t  8 sa t i s f i e s  the Laplace equation L 
+e,= 0 ( 7 )  

The eL solution will be used t o  adjust the ep solution t o  account for 

the  transverse conduction within the heated wall .  The boundary condi- 

t ions  on 8 are tha t  the normal derivatives along three s ides  of the 

quadrant are zero. 

O i y < b  - E  ae 0 ax - x = 0, 

Along the heated long side, i n  the fueled region a heat balance on a w a l l  

element as shown i n  fig.  2 yields the equation 

x = a ,  O L y , < c ,  k aT , = q g + w k w -  a2T 
ax aY2 

With qg = Q/4c, t h i s  has the equivalent form 

dx c 

I n  the unhe&ted region of the broad side, the he t balance yields  

a0 kw azo 
ax kf ay2 

x = a ,  c < y f b ,  - = w - -  

The boundary conditions on eL a re  found by noting tha t  BL = 8 - eP 
and hence, using eqs. (5a) t o  ( 5 c )  i n  conjunction w i t h  eqs. (sa) t o  (6d) 

give 
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Eq. ( 7 )  with boundary conditions of eqs. (7a)  t o  (7d) can be satis- 

f i e d  by a product solution of the form 

Eq. (8) immediately s a t i s f i e s  the conditions (7a) and ( T b ) ,  and collfii- 

t i ons  (7c) antj (7d) remain t o  be sat isf ied by proper evaluation of the  

Fourier coefficients k. Eq. (8) i s  different ia ted with respect t o  x, 

equated t o  the boundary conditions a t  

Fourier se r ies  t o  give 

x = a, and then expnded i n  a 

JbA@) cos2 (F) sinh (y) dy = 
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r a t i o  in.terms of exponential functions. This leads t o  the 

- 
- Z(1-x) - E ( l i - X )  

Y + e  c o s  (nny) 2nn 
Y 

- -  
1 - e  n=ly 2,3,. . . - 

The integrals  a re  carried out with the first in tegra l  on the r igh t  side 

being integrated twice by parts. After notation of the f a c t  t ha t  

= 0, t h i s  yields the expression fo r  An: SIxe 
A b  

For large n, the cosh and sinh terms i n  eqs. (8)  and (10) each be- 

come very large; hence, it i s  more convenient numerically t o  form the i r  

result  

where 

and 

the w a l l  conduction parameter. 
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- 

The coefficient contains the unknown quantity e ( 1 , Y )  which i s  

the dimensionless w a l l  temperature dis t r ibut ion along the  broad side. 

Out next objective i s  t o  determine the 

Eq. ( l l a )  i s  evaluated along the broad side of the channel by l e t t i n g  

- 
An i n  terms of known functions. 

X = 1, and e ( 1 , Y )  - Bp(l,Y) i s  substituted f o r  e L ( l , Y )  on the  l e f t  

side to1 give 

- 
A i s  then substituted f rom eq. ( l l b )  t o  obtain 

n 

Eq. (13) i s  c lear ly  an integral  equation f o r  the broad w a l l  temperature 

dis t r ibut ion 

An 

B ( l , Y ) ,  and i t s  solution w i l l  lead t o  an expression f o r  
- 

i n  terms of  known quantities. This particular form of in tegra l  

equation can be solved by applying a procedure given i n  ref. 9. F i r s t ,  

we note tha t  the integral  between def ini te  limits f 8(1,g) cos nfig dg 
1 

0 
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i s  a constant for  each n. These constants are unknown because they in- 

volve the unknown 0 ( l , g )  function. Define 

cn .$e(,,) cos nfie 

Eq. (13) i s  next multiplied by cos (mfiY) and integrated from Y = 0 t o  

1 t o  give 

ep( i ,y)  cos (mnY) dy = cnl - 
0 

Now define 

The Em coeff ic ients  can be direct ly  evaluated by using the eP from 

ref.  3 a s  given i n  the appendix. Eq. (16)  i s  substituted into eq. (15) 

and the  r e su l t  solved fo r  C : m 

c =  m 

From ea_. (lib)? by using the definit ion i n  eq. (141, xE can be writ ten as 
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The C from eq. ( 1 7 )  i s  substit,uted in to  eq. (181, and the  r e s a l t  i s  n 
simglified t a  

y + K n f i ( ' + e  +dY ) 
l-.-2nn/y 

By d i rec t  integration of eq* (16), with 8 from the appendix, the En 

are  found as 
P 

where G, Rn, and S a re  given i n  the appendix by eqs. (A2) ,  (A5) ,  and m 
(A7) .  This completes the 8 solution a s  the % needed t o  evaluate 

eq. (11) have now been provided i n  terms of known functions. 

L 

For the 6 solution t o  be useful i n  practice, it must be given 

r e l a t ive  t o  the dimensionless f luid bulk temperature 

fined a s  

$, which is  de- 



- 17 - 
The quantity 8P,b i s  given i n  ref. 3 so only eL,b must be evaluated 

here. Eq. (5) i s  used t o  eliminate u/ii from the def ini t ion of 8L,b, 

which gives 

The second form of Greew's theorem is  used t o  place t h i s  i n  the al terna-  

t i v e  form 

The second in tegra l  vanishes since V2f3 = 0. The first in tegra l  in- 

volves the normal derivatives of 8p and eL on the channel bound- 

aries. 

L 

These derivatives a re  zero except along the heated side. Here 

from eq. ( 5 c ) ,  &,/a, = beP/ax = l/b, and hence, eq. (23)  reduces t o  

The quant i t ies  eL(a,y) and aerJaxl are evaluated from eq. (1la) aaq 
x=a 

substi tuted t o  give 
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n b  m 

The first integral  i s  zero, and noting the def ini t ion of En i n  

eq. ( 1 6 ) ,  8L,b reduces t o  

which can be evaluated from eqs. (19) and (20). 

To summarize, the solution i s  given as 8 - 8,, = (6, - 8p,b) 

+ (e, - eL,b), where ep i s  given i n  the appendix, 8p,b i s  found i n  

ref .  3, 8, i s  given by eq. ( l l a ) ,  where i s  found f rom eq. (l9), 

and 'L,b i s  given by eq. (26), where En is  found from eq. (20).  

Case 11. - Heating extends past the corner in to  the side w a l l .  - 
Fig. 3 i l l u s t r a t e 3  a fue l  channel construction where the f u e l  p la tes  ex- 

tend in to  grooves i n  the side plates. 

ing tolerance, the fueled region i n  a nuclear reactor channel might 

Because of e r rors  i n  manufactur- 

sometimes extend beyond the corner, which would tend t o  r a i se  the corner 

temperature. 

y = b w i l l  be t reated a s  a source,the heat of which is  conducted into 

The heat generation supplied by the fue l  extending past  
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the long side a t  the corner. q e, g 
where, i n  t h i s  case, the heat generation per unit area q i s  related 

t o  the heat addition per unit  channel length 

The side p la tes  a re  again assumed t o  be nonconductors with no in te rna l  

The magnitude of t h i s  heat sowee is 

g 

Q by qg = Q/4(b + e ) .  

heat generation. Equating the heat source t o  the  peripheral  heat con- 

duction a t  the  corner gives 

y=b y=b 

The solution proceeds with small modifications i n  the same manner as 

case I. The heat balance f o r  a w a l l  element on the long side now gives 

Then both of the boundary conditions (7c) and (7d) an the 

are  replaced by 

solution 

The in tegra l  of t h i s  condition 

r b  

By substi tution of eq. (27), the integral  reduces t o  zero, which i s  a 

necessary condition for  it t o  be a sat isfactory boundary condition for 

Laplace’s equation. 
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The solution is  again given by 8 = ep + eLJ but the  change i n  

boundary condition makes it necessary t o  evaluate a new %. Eq. (9 )  

is changed t o  

Carrying out the  integrations and integrating the a 2 e/ay2 term twice 

by parts give 

(31) 

The expression f o r  the  corner derivative, eq, ( 2 7 h  i s  then substi tuted 

and the result solved fo r  An: 

By comparison with eq. (lo), it i s  seen tha t  the only difference is the 

b s in  - nm term i n  the previous An by (-1y -. e 
b b + e  

replacement of the - nlcc 
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The in tegra l  equation method of solution is  carr ied out i n  exactly the 

! -  

I 

same manner as the previous case and yields, instead of eq. (19), the 

ph term 
- 

- 
A =  n (33) 

The expression for  the bulk temperature 8L.b remains the same fo r  
- 

t h i s  case a s  eq. (26) .  The numerical magnitudes of An and eL+ w i l l ,  

of course, be different  from those f o r  case I. 

To summarize, the solution for case I1 i s  

8 - @b = (e, ep,b) + (e, eL,b) 

where ep i s  given i n  the appendix, 8P,b i s  found i n  ref. 3 fo r  the 

case where only the broad walls are  heated, and OL and eL,b a re  

given by eqs. ( l l a )  and (26), respectively, with % 
E from eq. (20) .  

from eq. (33) and 

n 
Limiting cases f o r  large K o r  large y. - The limiting case where 

K + DO i s  of i n t e re s t  because the conducting heated wall should then 

become one of constant temperature. I n  t h i s  section only the w a l l  tem- 

peratures w i l l  be considered. F i r s t  consider the broad heated w a l l  

X = 1, Y = Y. When K 4 a, the xn from eqs. (19) and (33) become 
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From eqs* (Ua), (26), and (34), 

m 00 

Now, we expand, eP(l,Y) - 8p,b i n  a Fourier cosine ser ies  

But from eq. (16), the second integral  i s  

tu t ion  and then substi tuting eq. (36) i n to  eq, (35) t o  eliminate 

eP(lJy) - ep,b g ive the  simplified expression 

En/nrr. Making t h i s  substi-  

Along the unheated short side a straightforward evaluation giveB 
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L n=l, 2,3,. . . 
To determine the l i m i t  f o r  f i n i t e  K and y + a 0  requires a lengthy 

algebraic manipulation tha t  i s  not suff ic ient ly  important t o  outline 

here. Hence, only the f inal  resul t  w i l l  be given: 

where 

1 31 
5 32 
- = -- (1.03693) 

m=l, 3,5:. 

RESUL!L'S AND DISCUSSION 

The channel w a l l  temperature dis t r ibut ion i s  a quantity of con- 

I n  f igs .  4 t o  7 a re  presented the siderable in te res t  t o  a designer. 

wall temperatures as evaluated f r o m t h e  preceding analysis. 

peratures have been nondimensionalized by forming a r a t i o  w i t h  Q/4kf. 

Thus, i n  any figure, the magnitudes of the curves can be thought of as 

d i r ec t ly  comparable i n  terms of temperature values when the f l u i d  con- 

These tem- 

duc t iv i ty  kf G X l  the total heat gmerat ior ;  g e T  -;iit charzcl 12,-,-th Q 
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are kept constant. 

three parameters: 

The dlmensionle~s w a l l  temperatures are governed by 

the w a l l  t o  f lu id  conductivity parameter K, the chan- 

ne l  aspect r a t i o  y, and e i ther  the width of the  heat generating region 

re la t ive  t o  the channel width 

tends past the corner e/b. 

influence of each of the parameters. 

c/b, or the distance that the  fue l  ex- 

The results irl the f igures  i l l u s t r a t e  the 

Case I(a). - Heating extends a l l  the  way t o  the  corner. - Fig. 4 

shows the e f fec ts  of varying the aspect r a t i o  (1 < y < -) and the thermal 

conductivity of tge broad w a l l  (0 < K C m )  on the difference between the 

dimensionless wall and bulk temperatd-es when uniform heat generation 

takes place over the en t i r e  width (c/b = 1) of the broad walls, 

- c  

- -  

As the  

abscissa i s  followed from l e f t  t o  right,  the  curves extend along the 

w a l l  from the center of the long side t o  the corner, and then f romthe  

corner t o  the  center of the short side. As an aid t o  understanding t h e  

figure, consider a set of channels that  Mve the same width of the  

broad sides Zb, and the same Q and kf, but w i t h  d i f ferent  spacings 

2a between the broad walls and different w a l l  conductivities &. For 

a fixed K, a s  the aspect r a t i o  y increases (by a decrease i n  2a), 

the temperatures on the  heated wall and the maximum temperature, which 

always occurs a t  €he corner, decrease- The reason fo r  the temperature 

reductions (discussed i n  d e t a i l  i n  ref. 3 fo r  the case K = 0) is that 

the heat flow paths from the heated walls t o  the bulk of the f l u i d  are  

shortened for larger y. 



- 25 - 
The peak t q e r a t u r e s  r e su l t  from the low fluid veloci t ies  i n  the 

corner, which cause the w a l l  teqperatures t o  rise t o  compensate f o r  the 

poor convection. As expected, when y has a fixed value, an increase 

i n  K causes the w a l l  temperatures t o  become considerably more uniform, 

and a substantial  reduction i n  the peak temserature is  obtained. 

results from the increased peripheral heat conduction, which causes 

This 

heat t o  flow from the hot ter  t o  the cooler regions of the w a l l s  and 

thereby reduces the bposed heat f lux t o  the fluid a t  the hot spots. 

K To obtain a physical appreciation f o r  the  magnitudes of the 

parameter,consider a channel where the  thickness af the broad w a l l s  is 

equal t o  one-fourth of the spacing between them (w/2a = 1/4). If the 

walls are  aluminum and the  coolant is water, K = 150. 

si tuation, but with walls made of stainless  s teel ,  K i s  reduced t o  13. 

For -the same 

Finally, for a stainless-s teel  channel cooled by a l iquid metal, K is  

1 or less ,  

Some of the present r e su l t s  can be coqared  with those i n  ref. 7 

(p. 385) ,  where the Nusselt number i s  given f o r  the constant-wall- 

temperature condition i n  ducts w i t h  various aspect ra t ias .  When y 

i s  large, the broad walls comprise most of the periphery, and when, i n  

addition, K i s  large, the condition of a constant-wall-temperature 

duct i s  closely approximated. With the  def ini t ions 
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there  i s  obtained 

For 

perature, which gives (Tw - Tb)4kf/Q = 0.053 

fo r  

NU = 7.4 

w i t h  the values 0.050, 0.025, and 0.0054, respectively, as coquted  

from eq. (37) for  K -P 03 

as shown i n  f ig .  4(b). 

y = 10, the  Nusselt nwiber from ref-  7 i s  6.2 f o r  constant w a l l  tem-  

from eq. (40). Similarly 

y = 20, Nu = 6.8 and (q - %)4kf/Q = 0.027, and f o r  y = 100, 

and (q - Tb)4kf/& = 0.0053. These values agree quite w e l l  

along the broad side of the duct (0 < Y < l), - -  

Case I (b ) .  - Heating extendls par t  way t o  the corner. - The next con- 

di t ion  t o  be considered is  the effect  on the w a l l  tenperatures of remoy- 

ing the  edge of the heated region a small distance (b - e )  away from the 

corner while maintaining the t o t a l  heating per unit channel length Q, 

a constanth c/b < 1 

is  i l l u s t r a t ed  i n  f ig .  5 f o r  ducts having various aspect r a t i o s  an8 wall 

conduct i v i t  i e  s. 

The re su l t  of narruwing the heat generating region 

I n  figs.  5(a) and (b), which are for y = 1 0 ' :  and 20, respectively, 

the case fo r  K = 1 demonstrates the e f fec t  of c/b most cleayly. 

The results fo r  K = 1 

K = 0 previauay  discussed i n  ref. 4. The most significant result f o r  

y = 10 

from unity. As c/b i s  decreased from unity, the corner temperature 

decreases sharply because of the smaller heat flux being iqposed on the  

are similar t o  those f o r  zero wall conduction, 

and 20 i s  the large influence exerted by small changes i n  c/b 
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region of poor convection a t  the corner, When c/b is decreased t o  

about 0.96 fo r  y = 20 o r  0.93 for y = 10, the maxhum w a l l  tenrpera- 

ture shifts from the v ic in i ty  of the corner t o  the center of the broad 

side. The reason f o r  this is the formation of a heat sink by the f l u i d  

adjacent t o  the  short side and the corner t h a t  draws heat away from the  

cent ra l  region of the  broad sides i n  a direct ion parallel t o  them. 

When c/b 0.94 fo r  y = 10 and c/b = 0.97 fo r  y = 20 the optimum 

condition is achieved where the peak teqperature i s  a minimum, and the 

broad w a l l  t e 6 e r a t u r e s  a re  close t o  uniform. When K i s  increased 

from 1 t o  e i the r  5 or 25, the  wall temperatures exhibit  the  same gen- 

eral dependence on c/b a s  fo r  K = 1, except that f o r  higher K the 

wall temperatures a re  more uniform. 

I n  fig. 5(c), which is  fo r  an aspect r a t i o  of 1, the behavior i s  

quite different  from the previous results f o r  y = 10 and 20. As 

sham i n  fig.  4(a) ,  when y = 1 the tewera tures  along the heated w a l l  

are  already quite uniform. Consequently, increasing K or removing 

the heat source from the corner by changing frum c/b = 1 t o  0.96 has 

a negligible e f fec t  on the wall-teqerature 'dis%iibu-bion. Hence, f o r  

a square configuration it i s  not ad-ntageous t o  remove the fuel load- 

ing from the corner region. 

Case 11. - Heating extends beyond the  corner in to  the side w a l l .  - 
Fig. 5 showed the e f fec t  of removing heat generation from the corner 
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region, and fig.  6 now dexonstrates the opposite s i tuat ion where the 

fue l  extends beyond the  corner into the side plate.  

amounts t o  providing an additional heat source a t  the  corner t ha t  w i l l  

r a i s e  the peak temperature. The parameter e/a i s  the r a t i o  formed by 

dividing the distance tha t  the fue l  extends past the  corner by the 

half spacing between the plates. For a fixed value of K, an increase 

i n  

higher peak temperature. A s  K i s  increased, the peak temperatWes 

and temperature gradients i n  the broad wall decrease rapidly. 

of 25, the temperature dis t r ibut ion is  much more uniform, with the 

parameter then having only a minor effect .  

Essentially t h i s  

e/a providks more heating a t  the corner thereby resul t ing i n  a 

For a K 

e/a 

Dependence of maximum wall temperature on y and K. - The location 

and magnitude of the maximum wall temperature i s  of great prac t ica l  im- 

portance t o  avoid possible damage t o  the  channel. 

t o  assess i n  more d e t a i l  the influence of the  aspect r a t i o  and the  w a l l  

conductivity parameter on the peak temperature. 

always occurs a t  the corner when t h e  heating extends a l l  the  way t o  the  

side wall 

e f fec t  of y a k  K on the peak t eqe ra tu re ,  the  case af c/b = 1 is 

examined i n  more d e t a i l  as shown in f ig .  7. Each curve is  for  a d i f fe r -  

ent 

aspect ra t io .  For a l l  K values, the peak temperature decreases sub- 

s t an t i a l ly  a s  the aspect r a t i o  i s  increased t o  about 10 or 20, while 

Hence, it is  of value 

The maximum temperature 

c/b = 1 or into the side wall e/a > 0. To i l l u s t r a t e  the 

K and gives the dependence of the  maximum wall temperature on the  



- 29 - 
beyond 20, the fur ther  decrease i s  s m a l l .  The curves show tha t  a lower 

peak temperature can resu l t  for  a channel of low conductivity i f  the 

aspect r a t i o  is kept high (e.g., K = 1, y = 20) than f o r  a channel of 

high K i f  y i s  low (e.g., K = m, y = 3). Results similar t o  these 

are  indicated f o r  si tuations where c/b # 1 and e/a 0. Hence, 

f ig.  6 provides the significant conclusion tha t  the optimum prac t ica l  

aspect r a t i o  for  channels with any wall conductivity i s  i n  t h e  range 

y = 10 t o  20. 

There i s  nb experimental information fo r  laminar flow that can be 

used f o r  d i rec t  comparison with the present results. 

some experiments reported on turbulent heat t ransfer  inside rectangular 

channels t ha t  had internal  heat generation on a l l  four sides. 

ref.  10, a s ta inless-s teel  channel of aspect r a t i o  26.6 was cooled by a 

turbulent flow of superheated s tem,  and t h e  K was approximately 300. 

In  ref .  11, water was used t o  cool a s ta inless-s teel  channel of aspect 

r a t i o  20, and the K was approximately 25. I n  both instances there 

was an increase i n  w a l l  temperature noted i n  the region adjacent t o  the  

corner; however, detailed peripheral temperature traverses were not 

given. 

There have been 

I n  

CONCLUSIONS 

An analysi-s has been carried out t o  determine the temperatures i n  a 

rectangular channel with heat generating broad sides and unheated 

short  sidesunder the conditions that peripheral heat conduction occurs 
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i n  the broad sides. The heat conduction within the broad walls was Pomu- 

la ted i n  terms of an in tegra l  equation and coupled with the convective 

energy equation within the  f luid.  The analyt ical  solutions for t he  tem- 

peratures were evaluated along the  channel walls fo r  several values of 

the aspect ra t id ,  thermal conductivity of the heated w a l l ,  and width of 

the heat generating region on the broad side. 

provided the following conclusions: 

The wall temperqtures 

1. Increasing the  transverse conduction i n  the heated broad sides 

produces a substantial  decrease i n  the peak t e q e r a t u r e  and temperature 

gradients along the  broad sides. 

2. For the’case where the  heat generation occurs over the  en t i r e  

width of the broad walls, the  peak temperature decreases as the aspect 

r a t i o  i s  increased t o  about 20 for  a l l  values of the w a l l  conductivity 

The peak tewera ture  then decreases only s l igh t ly  as aspect r a t i o  is 

fur ther  increased. 

20 i s  the optimum for  minimizing the peak temperature. 

This resu l t  indicates tha t  an aspect r a t i o  of about 

3. For ducts of large aspect r a t i o  such as 10 and 20, removing the 

region of heat generation a short distance away from the corner r e su l t s  

i n  substantial  reductions i n  the peak temperature. 

conductivity, t h i s  effect  is s m a l l  since the temperature dis t r ibut ions 

a re  already almost uniform. 

With large wall 



I .  

- 31 - 
4. Similarly, extending the fuel  a f in i t e  d i s tmce  beyond the corner 

can great ly  increase the peak temperature unless w a l l  conductivity is  

large. 
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A.PpENDIX 

SOLUTION FOR ep 
The following is  the solution f o r  the  special case of a rectangular 

duct with the two broad s ides  uniformly heated and the two short s ides  

i n s d a t e d  (ref.  3): 

ep - 8p,b = e, + Sn + el f e2 - @p,b 

r 00 1 -= 
G = I & +  t a A  

m=l, 3,5,. . . 
e * = - ( x 2  1 - Y Y )  2 2  

2Y 

cos (nlry) 
cosh ( y  x) 
sinh (7) 1 e =rBn 

n=l, 2,3,. . . 
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where 

f 03 

For 

lengthy t o  warrant repe t i t ion  herein. 

8p,b, the reader i s  referred t o  ref. 3 since the expression i s  too 
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